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The capability of density-functional theory to deal with the ground state of strongly correlated low-
dimensional systems, such as semiconductor quantum dots, depends on the accuracy of functionals developed
for the exchange and correlation energies. Here we extend a successful approximation for the correlation
energy of the three-dimensional inhomogeneous electron gas, originally introduced by Becke �J. Chem. Phys.
88, 1053 �1988��, to the two-dimensional case. The approach is based on nonempirical modeling of the
correlation-hole functions satisfying a set of exact properties. Furthermore, the electron current and spin are
explicitly taken into account. As a result, good performance is obtained in comparison with numerically exact
data for quantum dots with varying external magnetic field, and for the homogeneous two-dimensional electron
gas, respectively.
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I. INTRODUCTION

Density-functional theory1 �DFT� maps the complicated
many-particle problem onto a simple one of noninteracting
electrons moving in an effective local potential, the Kohn-
Sham �KS� potential. The latter is constructed in such a way
that the ground-state density of the noninteracting particles
reproduces the ground-state density of the interacting sys-
tem. Practical success of the approach depends on finding
good approximations for the exchange-correlation �xc� en-
ergy which, through functional derivation with respect to the
particle density, defines the xc part of the KS potential. Most
of the approximations developed so far have focused on
three-dimensional �3D� systems, i.e., atoms, molecules, and
solids. Many advances have been made beyond the com-
monly used local �spin� density approximation �L�S�DA� by
means of, e.g., generalized gradient approximations, orbital
functionals, and hybrid functionals.2 Such efforts for two-
dimensional �2D� systems have been relatively scarce despite
the rapidly increasing experimental and theoretical interest in
quasi-2D structures such as semiconductor layers and sur-
faces, quantum-Hall systems, graphene, and various types of
quantum dots3 �QDs�.

When using DFT, QDs are most commonly treated using
the 2D-LSDA exchange4 combined with the 2D-LSDA cor-
relation parametrized first by Tanatar and Ceperley5 and
later, with more satisfactory spin dependence, by Attaccalite
et al.6 In many cases, the LSDA �prefix “2D” omitted below�
performs relatively well compared, e.g., with quantum
Monte Carlo calculations.7 Nevertheless, there is a lack of
2D functionals to deal with diverse few-electron QD sys-
tems, especially in the strong-correlation regime. Only very
recently, a local correlation functional was developed in 2D
within the Colle-Salvetti approach, which was found to out-
perform the LSDA.8 In its current form, however, this local
functional applies only to closed-shell systems with zero spin
and zero current. In addition to the correlation-energy func-
tional, exchange-energy functionals have been developed for

finite 2D systems in our foregoing works.9–11

In this paper we develop a correlation-energy functional
in 2D. In the derivation, along the lines of the work of
Becke12 for the 3D case, we discuss a model for spin-
dependent correlation-hole functions satisfying a set of exact
properties in 2D. As a result, we find a spin- and current-
dependent approximation for the correlation energy. In com-
parison with numerically exact results, the obtained accuracy
is found to be superior to the LSDA. However, we also find,
and elucidate, that further modeling of the dependency on
the average electron density of those parameters describing
the size of the correlation-hole functions in terms of the size
of the exchange-hole �x-hole� functions would be required.
The applications of the functional to a set of few-electron
QDs with various relative amounts of correlation, ground-
state spins, electron currents, and external magnetic fields
confirm the overall usefulness of the approach.

II. THEORY

Within the KS method of spin-DFT,13 the ground-state
energy and spin densities �↑�r� and �↓�r� of a system of N
=N↑+N↓ interacting electrons are determined. The total en-
ergy of the interacting system is written as a functional of the
spin densities14

Ev��↑,�↓� = Ts��↑,�↓� +� drv�r���r� + EH��� + Exc��↑,�↓� ,

�1�

where Ts��↑ ,�↓� is the kinetic-energy functional of noninter-
acting electrons with spin densities �↑, �↓. v is �at vanishing
external magnetic field� the external �local� scalar potential
acting upon the interacting system, EH��� is the classical
electrostatic or Hartree energy of the total charge density �
=�↑+�↓, and Exc��↑ ,�↓� is the xc energy functional. Exc may
be further decomposed into the exchange energy, Ex, and
correlation energy Ec. We have already considered Ex in
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Refs. 9–11, and thus we here focus on Ec. Our starting point
is the formal expression for Ec in terms of the correlation-
hole �c-hole� function,

Ec��↑,�↓� =
1

2 �
���
� dr1� dr2

���r1�
�r1 − r2�

hc
����r1,r2� , �2�

where

hc
����r1,r2� = �

0

1

d�hc,�
����r1,r2�

= �
0

1

d�h�
����r1,r2� − hx

��r1,r2����� �3�

is the c-hole function. Here ����	= �↑↑ , ↓ ↓ , ↑ ↓ , ↓↑	 and
the parameter �� �0,1� is the electronic coupling strength.1

In the above expression, the c-hole corresponds to the full

hole function h�
��� subtracted by the x-hole function defined

as

hx
��r1,r2� = −

��k=1

N� �k,�
� �r1��k,��r2��2
���r1�

. �4�

Note that here hx
� is defined to have a negative sign in con-

trast to the standard definition �see, e.g., Eq. �4� in Ref. 9�.
The �-dependent hole function is given by

h�
����r1,r2� =

P2,�
����r1,r2�
���r1�

− ����r2� , �5�

where P2,�
��� is the two-body reduced density matrix

�2BRDM� �Ref. 12�,

P2,�
����r1,r2� = N�N − 1�� d3� d4. . .� dN

� ��
��1,2, . . . ,N����1,2, . . . ,N� . �6�

Here, ���1,2 , . . . ,N� stands for the ground-state many-body
wave function, which is the exact solution of the electronic
system with a Coulomb coupling strength �, 
dN denotes the
spatial integration and spin summation over the Nth spatial
spin coordinates �rN ,�N�, and we have identified �1=�, �2
=��. Note that the spin densities in Eq. �5� are the same as in
the actual fully interacting system.

As it is well known, in determining the correlation energy
it is sufficient to know the angular average of the c-hole
function. In 2D it is natural to consider the cylindrical aver-
age, given by

h̄c,�
����r,s� =

1

2�
�

0

2�

d	hc,�
����r,r + s� , �7�

where r1=r, r2=r+s, and 	 is the angle between r and s.
The modeling of the c-hole functions is based on satisfying
the following conditions:

�i� sum rule

�
0




dssh̄c,�
����r,s� = 0; �8�

�ii� correct short-range behavior for s→0;
�iii� a proper decay in the limit s→
;
�iv� characteristic size assumed to be proportional to the

characteristic size of the corresponding angular averaged
x-hole.

The short-range behavior of the c-hole can be worked out
by considering the electronic cusp conditions for the 2D
electronic wave function.15 The angular average of the
2BRDM in Eq. �6� is then given by

P̄2,�
���r,s → 0� � A���r�s2�1 +

2

3
�s
 , �9�

and

P̄2,�
��̄�r,s → 0� � A��̄�r��1 + 2�s� , �10�

for the same-spin and opposite-spin elements, respectively.
Note that the symbol �̄ always denotes spin opposite to �,
whereas ��, when used, can be equal to either � or �̄. Here
the coefficients A����r� have a spatial dependence. Although
the cusp condition as developed in Ref. 15 pertains to the
center of mass and relative coordinate, it can be shown, as
noted by Becke,12 that at the order considered above the
same results apply also for the coordinate system of r and s.

The short-range behavior of the 2D x-hole is known.9,16

Thus, it is possible to consider the following model for the
same-spin and opposite-spin c-hole functions, respectively:

h̄c,�
���r,s� = �B���r� − D��r� +

2

3
�B���r�s�s2 F�����r�s� ,

�11�

and

h̄c,�
��̄�r,s� = �B��̄�r� − ��̄�r� + 2�B��̄�r�s� F����̄�r�s� .

�12�

Here B��ªA�� /�� and B��̄ªA��̄ /�� are coefficients to be
determined, and

D� ª
1

2
��� −

1

4

�����2

��

−
jp,�

2

��

; �13�

where ��=�k=1
N� ���k,��2 is the �double of the� kinetic-energy

density and jp,�= 1
2i�k=1

N� ��k,�
� ���k,��− ���k,�

� ��k,�� is the
spin-dependent paramagnetic current density. In Eqs. �11�
and �12�, the functions F������r�s� are introduced to ensure
the decay of the c-holes in the limit s→
. We choose them
to have the form F�x�=exp�−x2�, which seems appropriate in
the case of finite 2D systems. The parameters �����r� are
determined by the zero-integral constraint of Eq. �8� �see
below�.

Next, we introduce the characteristic sizes of the c-holes,
z�� and z��̄, for which the corresponding c-hole function
vanishes, i.e.,

h̄c,�
���r,z��� = 0; h̄c,�

��̄�r,z��̄� = 0. �14�

Implying these conditions, the coefficients B�� and B��̄ in
Eqs. �11� and �12� can be written as
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B�� =
D�

1 +
2

3
�z��

, B��̄ =
��̄

1 + 2�z��̄

. �15�

It should be noted, however, that the size parameters z�� and
z��̄ are functions of r. As for the 3D functional, we assume
the size of the c-hole to be proportional to the size of the
x-hole. Thus, we set

z���r� ª c����Ux
��r��−1 + �Ux

��r��−1� = 2c���Ux
��r��−1,

�16�

and

z��̄�r� ª c��̄��Ux
��r��−1 + �Ux

�̄�r��−1� , �17�

where Ux
� is the x-hole potential9,17 for spin �, and c�� and

c��̄ are constants to be determined �see below�. As suggested
by Becke,12 the proportionality is plausible due to the fact
that each electron is surrounded by its Fermi hole, and hence
the electrostatic interaction between two electrons can be ex-
pected to be screened beyond some characteristic length pro-
portional to the average size of the x-hole. The argument is
not spin related, beyond the fact that the characteristic length
for the x-hole could be different for spin up than for spin
down. Of course, this is only a simplification, but the physi-
cal picture is appealing, and it has led to good results in 3D
atomic systems.

The �-dependent c-hole functions can now be written as

h̄c,�
���r,s� =

2

3
�D��r�� s − z���r�

1 +
2

3
�z���r��s2F�����r�s� , �18�

and

h̄c,�
��̄�r,s� = 2���̄�r�� s − z��̄�r�

1 + 2�z��̄�r��F����̄�r�s� . �19�

Integrating over � yields

h̄c
���r,s� =

D��r��s − z���r��s2F�����r�s�
2z��

2 �r�

��2z���r� − 3 ln�2

3
z���r� + 1
� , �20�

and

h̄c
��̄�r,s� =

��̄�r��s − z��̄�r��F����̄�r�s�

2z��̄
2 �r�

��2z��̄�r� − ln�2z��̄�r� + 1�	 . �21�

Finally, we enforce the sum rules in Eq. �8� giving

����r� =
3��

4z���r�
, �22�

and

���̄�r� =
��

2z��̄�r�
. �23�

This concludes the derivation of the c-hole functions h̄�� and

h̄��̄, apart from the determination of constants c�� and c��̄,
respectively.

From the c-hole functions we can calculate the c-hole
potentials as

Uc
����r� = 2��

0




dsh̄c
����r,s� . �24�

For the same- and opposite-spin cases of our approximation,
we find respectively

Uc
���r� =

16

81�
�8 − 3��D��r�z��

2 �r�

��2z���r� − 3 ln�2

3
z���r� + 1
� , �25�

and

Uc
��̄�r� = �2 − ����̄�r� � �2z��̄�r� − ln�2z��̄�r� + 1�	 .

�26�

The correlation energies are given by

Ec
��� =

1

2
� dr���r�Uc

����r� . �27�

Thus

Ec��↑,�↓� = Ec
↑↑ + Ec

↓↓ + 2Ec
↑↓, �28�

where we have used the condition Ec
↑↓=Ec

↓↑.
Alternatively, we can compute the correlation energy di-

rectly from the c-hole functions. From Eqs. �2� and �7� we
get

Ec��↑,�↓� = ��
���
� dr�

0




ds���r�h̄c
����r,s� . �29�

We remind that D��r� introduced in Eq. �13� vanishes for
all the single-particle �N=1� systems.12 Therefore, the c-hole
and thus Ec vanish as well. In other words, our approxima-
tion for the correlation energy is self-interaction free for
N=1.18

III. NUMERICAL RESULTS

The first task in the numerical applications is to complete
the correlation functional by finding approximations for con-
stants c�� and c��̄ in Eqs. �16� and �17�. For this purpose, we
consider a set of harmonically confined QDs, where the ex-
ternal confinement is given by v�r�=
2r2 /2. Reference re-
sults for the correlation energies can be obtained from

Ec
ref = Etot

ref − Etot
EXX, �30�

where Etot
ref is the exact total energy obtained, e.g., from, an

analytic accurate configuration-interaction �CI� or quantum
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Monte Carlo �QMC� calculation, and EXX refers to the exact
exchange. Here we have calculated the EXX energies in the
Krieger-Li-Iafrate19 �KLI� approach19 in the octopus DFT
code.20 The self-consistent EXX result—the x-hole potential,
�spin� density, kinetic-energy density, and current density—is
used as input for our correlation functional.

Table I shows the results for the same-spin case. Now the
QDs are completely spin polarized with Sz=N /2. For each
QD we show that value of c�� which yields the reference
correlation energy, i.e., Ec

model=Ec
ref. In these examples we

find c��=1.24, . . . ,1.41. Thus, the variation in c�� is rather
small in view of the fact that the density parameter, approxi-
mated in harmonic QDs as rs

QD=N−1/6
−2/3,22 varies from 1.9
to 5.3. The second last column of Table I shows the correla-
tion energy obtained by using a fixed average value of c��

=1.32. This leads to the maximum deviation of �23% from
Ec

ref. In comparison, the self-consistent LSDA correlation en-
ergy �last column� deviates from the reference result by up to
130%.

Table II shows the results for a set of unpolarized �Sz
=0� QDs in the range 1.5�rs

QD�5.7. Note that for N�2
both same- and opposite-spin components of the correlation
are present, and we have fixed c��=1.32 according to the
conclusions above. Fixing c��̄=0.75 yields deviations of
only �10% from Ec

ref, except for the highly correlated case
of N=2 and 
=1 /16, which shows a deviation of 25%. The
LSDA is still considerably further off the reference result
than our functional, but it performs relatively better than in
the polarized case discussed above. In particular, when N
=12 the error in the LSDA correlation is only about 9%. This
is in line with the well-known fact that both the L�S�DA
exchange and correlation become more accurate with in-
creasing particle number.

In Fig. 1 we consider the total energy of a more general
case: A six-electron QD as a function of the magnetic field B
directed perpendicular to the dot plane. Increasing the field
leads to nontrivial changes in the ground-state quantum num-
bers �Sz ,Lz� and hence to “kinks” in the ground-state total
energy as a function of B. As the reference data, we use here
the variational QMC results �red solid line� given in Refs. 7
and 25 for a wide range of B up to total spin polarization.
The confinement strength is here 
=0.42168, corresponding
to a typical confinement of 5 meV when modeling QDs in
GaAs.3 Note that the total confinement energy, i.e., 6�
=6�
2+
c

2 /4, where 
c=B /c, has been subtracted from the
total energies to clarify the comparison. We point out that the
variational QMC method gives an upper bound for the true
total energy. On the basis of previous comparisons between
the variational and diffusion QMC, and exact
diagonalization,26 our reference data in Fig. 1 can be ex-
pected to overestimate the exact total energy by at most
0.2, . . . ,3 meV. The maximum possible errors are smaller in
the polarized regime �B�5� T.

Overall, Fig. 1 shows reasonable agreement of our func-
tional �circles� with the QMC data through the full range of
the magnetic field. However, the functional yields systemati-
cally slightly too low correlation energies, and thus too low
total energies, even if the possible overestimation of the total
energy given by the variational QMC is taken into account.
We point out that the functional is here applied with the fixed
parameters c��=1.32 and c��̄=0.75 suggested by the results
in Tables I and II, which correspond to considerably weaker
confining potentials �smaller values of 
�. Obviously, this
difference implies a different average electron density, and
thus a different range of the relative correlation energy. In
fact, if the parameter values are reduced to c��=1.1 and

TABLE I. Total energies from the full configuration-interaction calculations �Ref. 21� for totally
spin-polarized �Sz=N /2� quantum dots, exact-exchange total energies, the reference correlation energies
�Ec

ref=Etot−Etot
EXX�, c�� yielding Ec

model=Ec
ref, Ec

model obtained with a fixed average value c��=1.32, and the
LSDA correlation energy.

N 
 Etot
ref Etot

EXX Ec
ref c�� Ec

model Ec
LSDA

3 1/4 2.081 2.103 −0.0226 1.27 −0.0245 −0.0538

3 1/16 0.6908 0.7075 −0.0167 1.41 −0.0144 −0.0382

6 1/4 7.233 7.296 −0.0640 1.24 −0.0750 −0.1125

6 1/16 2.553 2.599 −0.0458 1.36 −0.0441 −0.0795

TABLE II. Similar to Table I but for unpolarized �Sz=0� quantum dots. The correlation energies from our
functional, Ec

model, have been calculated using the fixed average values c��=1.32 and c��̄=0.75.

N 
 Etot
ref Etot

EXX Ec
ref c��̄ Ec

model Ec
LSDA

2 1 3a 3.162 −0.162 0.72 −0.171 −0.199

2 1/4 0.9324b 1.046 −0.114 0.82 −0.102 −0.139

2 1/16 0.3031b 0.373 −0.070 0.96 −0.053 −0.085

6 1/4 6.995b 7.391 −0.396 0.73 −0.406 −0.457

12 1 /1.892 25.636c 26.553 −0.917 0.71 −0.983 −1.000

aAnalytic solution by Taut from Ref. 23.
bCI data from Ref. 21.
cDiffusion QMC data from Ref. 24.
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c��̄=0.7, excellent agreement with QMC is found �see the
crosses in Fig. 1�. Hence, it seems that particularly high pre-
cision of our functional would require modeling of c�� and
c��̄ as a function of the particle density. Most importantly,
however, the systematic performance of our approximation
in Fig. 1 demonstrates that the magnetic field effects, elec-
tron currents, and spin are correctly accounted for.

We note that the good accuracy of the LSDA in terms of
total energies �see the dotted line in Fig. 1� is due to the
compensation of respective errors in the exchange and cor-
relation energies.25 On the other hand, we tested our correla-
tion functional for the important limit of the homogeneous
2D electron gas �2DEG�, for which the LSDA correlation is
exact, and found reasonable agreement as a function of rs

=1 /��� for both zero and full spin polarization �see Fig. 2�.
Here we used the original average parameter values c��

=1.32 and c��̄=0.75. Note that according to the numerically
exact results in Ref. 6, the ground state of the 2DEG is un-
polarized for 0�rs�26.

Finally, we point out that in principle a given functional
should be evaluated with KS orbitals obtained from self-
consistent calculation instead of a post-hoc manner as we
have done in this work. However, the variational nature of
DFT implies that if one evaluates the total energy with den-
sities which slightly differ from the self-consistent one, the

resulting change in the energy is of second order in the de-
viation of the densities.

IV. CONCLUSIONS

We have derived a spin- and current-dependent approxi-
mation for the correlation energy of finite two-dimensional
electron systems. The core of the derivation is a model for
the correlation-hole function of both same-spin and opposite-
spin pairs, respectively, that satisfies a set of exact properties.
The excellent results obtained for few-electron quantum dots
with different spin polarization, current, external magnetic
field, and covering a wide range of correlation energies
strongly recommend further developments along the con-
struction we have presented here.
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